Hujan Asam (acid rain)

, 1 komentar

Hujan Asam (acid rain)

Atmosfir dapat mengangkut berbagai zat pencemar ratusan kilometer jauhnya, sebelum menjatuhkannya ke permukaan bumi dalam perjalanan jauh itu atmosfir bertidak sebagai reaktor kimia yang kompleks merubah zat pencemar setelah berinteraksi dengan substansi lain, uap air dan energi matahari. Pada kondisi tertentu sulfur oksida (SOx) dan nitrogen oksida (NOx) hasil pembakaran bahan bakar fosil akan bereksi dengan molekul-molekul uap air di atmosfir menjadi asam sulfat (H2SO4) dan asam nitrat (HNO3) yang selanjutnya turun ke permukaan bumi bersama air hujan yang dikenal hujan asam.

Hujan asam telah menimbulkan masalah besar di daratan Eropa, Amerika Serikat dan di Negara Asia termasuk Indonesia. Dampak negatif dari hujan asam selain rusaknya bangunan dan berkaratnya benda-benda yang terbuat dari logam, juga terjadinya kerusakan lingkungan terutama mengasakan (acidification) danau dan sungai. Ribuan danau airnya telah bersifat asam sehingga tidak ada lagi kehidupan akuatik, dikenal dengan “danau mati”.



Gambar 2 Proses terjadinya hujan asam

Video dampak hujan asam

Karakteristik Cairan

, 0 komentar

Karakteristik Cairan

Gas dapat dicairkan dengan mendinginkan pada tekanan tertentu. Ketika suhunya diturunkan, energi kinetik molekul gas akan menurun, dan akan menjadi sebanding dengan gaya tarik antarmolekulnya. Akhirnya jarak antarmolekul menurun sampai titik gas berubah menjadi cairan. Cairan memiliki volume tetap pada temperatur tetap tetapi cairan tidak memiliki bentuk yang tetap. Dalam hal ini, cairan mirip gas. Namun, kalau diperhatikan jarak antarmolekulnya, terdapat perbedaan besar antara cairan dan gas. Satu gram air memiliki volume sekitar 1 cm3, tetapi uap air menempati volume 1,69 x 103 cm3 pada 373 K dan 1 atm. Anda dapat memperikirakan jarak antarmolekul dalam kedua kasus ini, dan dengan membandingkan data ini, Anda akan menyadari perbedaan antara cairan dan gas.

Contoh soal 7.1 Perbedaan jarak antarmolekul

Dengan menggunakan data di atas, tentukan rasio jarak antarmolekul air dan uap air.

Jawab

Ruang yang ditempati uap air dapat dianggap sebagai kubus. Panjang sisi kubus yang ditempati

adalah 3√1,69 x 103 = 11,9 cm. Jadi rasio jarak antarmolekulnya adalah 11,9 cm.

Anda telah mempelajari bahwa teori kinetik mengasumsikan bahwa interaksi intermolekul dalam wujud gas sangat kecil, sehingga dapat diabaikan. Dalam wujud cair, situasinya tidak begitu sederhana sebab setiap molekul dikelilingi banyak molekul lain dan dengan demikian tumbukan mungkin terjadi. Pengamatan menarik pertama adanya gerakan cairan dilakukan oleh Brown yakni adanya gerakan acak serbuk sari di permukaan air. Asal gerakan Brown adalah tumbukan antara serbuk dan molekul air dan diinterpretasikan sebagai berikut: karena besaran dan arah tiap tumbukan yang mendorong serbuk sari bervariasi, partikel sebuk akan bergerak secara random.

Sebenarnya dapat dilakukan penanganan gerakan partikel cairan dengan menggunakan model mekanik sebagai dalam kasus partikel gas. Namun, pengaruh molekul yang bertumbukan atau molekul sekitarnya sedemikian besar sehingga sukar untuk menangani cairan secara kuantitatif. Di kimia sekolah menengah, hanya penjelasan untuk caiarn hanya diberikan dengan agak samar, yakni dengan mengatakan bahwa keadaan cairan adalah pertengahan antara wujud gas dan wujud padat. Lebih lanjut juga hanya dinyatakan bahwa energi kinetik dan jarak antarmolekul partikel cairan juga pertengahan antara dalam wujud padat dan gas. Demikian juga keteraturan posisi partikelnya juga dianggap pertengahan antara gas dan padat. Demikianlah alasan mengapa tidak ada deskripsi kuantitatif cairan di buku-buku teks sekolah menengah (Gambar 7.1).

Buku ini juga tidak akan memberikan deskripsi mikroskopik cairan, dan berbagai sifat cairan hanya akan dilihat dari sudut makroskopik.



Gambar 7.1 Gambaran skematik gerakan molekul dalam padatan, cairan dan gas. Dengan meningkatnya suhu, kecepatan gerakannya akan meningkat, dan dengan demikian energi kinetiknya juga meningkat sehingga lebih besar dari gaya tarik antarmolekulnya.

Volume gas dapat ditekan sementara volume cairan hampir tidak dapat ditekan sebab jarak antarmolekul jauh lebih pendek. Dalam padatan, setiap molekul cenderung menempati posisi tertentu. Bila susunan molekul dalam padatan teratur, padatan disebut padatan kristalin. Bila tekanan diberikan pada kristal, pengaruh tekanan pada padatan lebih kecil dibandingkan pengaruhnya pada cairan. Bila cairan meleleh, dalam banyak kasus volumenya meningkat sekitar 10%. Hal ini berkaitan dengan perbedaan dalam pengepakan molekul dalam cairan dan padatan. Singkatnya, cairan lebih dekat dengan padat dibandingkan dengan gas.

Partikel gas berdifusi sebab gas bergerak dengan cepat. Molekul cairan bergerak dengan lebih lambat. Partikel dalam padat tidak pernah berdifusi sebab gaya antarmolekul demikian kuat sehingga energi kinetiknya tidak dapat mengatasinya.

Sifat Cairan

, 0 komentar

a. Tekanan uap

Seperti dalam kasus gas, energi kinetik molekul cairan tidak seragam tetapi bervariasi. Terdapat keteraturan dalam keragaman ini, dan distribusi energi kinetik ditentukan oleh hukum distribusi Boltzmann. Hukum ini menyatakan bahwa partikel yang paling melimpah adalah partikel dengan energi kinetik rata-rata, dan jumlah partikel menurun dengan teratur ketika selisih energi kinetiknya dengan energi kinetik rata-rata semakin besar.

Beberapa molekul yang energi kinetiknya lebih besar dari energi kinetik rata-rata dapat lepas dari gaya tarik antarmolekul dan menguap. Bila cairan diwadahi dalam ruang tanpa tutup, cairan akan perlahan menguap, dan akhirnya habis. Bila ruangnya memiliki tutup dan cairannya terisolasi, molekulnya kehilangan energinya dengan tumbukan, dsb, dan energi kinetik beberapa molekul menjadi demikian rendah sehingga molekul tertarik dengan gaya antarmolekul pada permukaan cairan dan kembali masuk ke cairan. Ini adalah kondensasi uap dalam deskripsi makroscopik. Akhirnya jumlah molekul yang menguap dari permukaan cairan dan jumlah molekul uap yang kembali ke cairan menjadi sama, mencapai kestimbangan dinamik. Keadaan ini disebut kesetimbangan uap-cair (Gambar 7.2).

Tekanan gas, yakni, tekanan uap cairan ketika kesetimbangan uap-cair dicapai, ditentukan hanya oleh suhunya. Baik jumlah cairan maupun volume di atas cairan tidak mempunyai akibat asal cairannya masih ada. Dengan kata lain, tekanan uap cairan dalam ruang ditentukan oleh jenis cairan dan suhunya.



Gambar 7.2 Gambaran skematik kesetimbangan uap-cairan. Keadaan dimana jumlah molekul menguap dari permukaan cairan, dan jumlah molekul uap yang kembali ke cairan sama.

Tekanan uap cairan meningkat dengan meningkatnya suhu. Pola peningkatannya khas untuk cairan tertentu. Dengan meningkatnya suhu, rasio molekul yang memiliki energi yang cukup untuk mengatasi interaksi antarmolekul akan meningkat (Gambar 7.3).



Gambar 7.3 Temperatur dan energi kinetik molekul (T1 > T2). Energi kinetik molekul bergantung temperatur. Sebenarnya kecepatan molekul pada temperatur tertentu tidak seragam, keragamannya mengikuti hukum distribusi Boltzmann. Daerah yang diarsir dalam gambar berkaitan dengan molekul yang memiliki energi kinetik cukup untuk lepas dari permukaan cairan (T1(a) < T2(b)).

Tekanan uap meningkat dengan kenaikan suhu. Gambar 7.4 menunjukkan hubungan antara suhu dan tekanan uap berbagai cairan.
b. Titik didih

Tekanan uap cairan meningkat dengan kenaikan suhu dan gelembung akan akan terbentuk dalam cairannya. Tekanan gas dalam gelembung sama dengan jumlah tekanan atmosfer dan tekanan hidrostatik akibat tinggi cairan di atas gelembung. Wujud saat gelembung terbentuk dengan giat disebut dengan mendidih, dan temperatur saat mendidih ini disebut dengan titik didih. Titik didih pada tekanan atmosfer 1 atm disebut dengan titik didih normal (Gambar 7.4). Titik didih akan berubah bergantung pada tekanan atmosfer. Bila tekanan atmosfer lebih tinggi dari 1 atm, titik didih akan lebih tinggi dari titik didih normal. Sementara bila tekanan atmosfer lebih rendah dari 1 atm, titik didihnya akan lebih rendah dari titik didih normal.



Titik didih dan perubahannya dengan tekanan bersifat khas untuk tiap senyawa. Jadi titik didih adalah salah satu sarana untuk mengidentifikasi zat. Identifikasi zat kini dilakukan sebagian besar dengan bantuan metoda spektroskopi, tetapi data titik didh diperlukan untuk melaporkan cairan baru.

Titik didih ditentukan oleh massa molekul dan kepolaran molekul. Di antara molekul dengan jenis gugus fungsional polar yang sama, semakin besar massa molekulnya, semakin tinggi titik didihnya. Contoh yang baik dari hal ini adalah hidrokarbon homolog (Tabel 7.1). Di pihak lain, bahkan untuk massa molekul rendah, molekul dengan kepolaran besar akan mengalami gaya intermolekul yang kuat yang mengakibatkan titik didihnya lebih tinggi. Contoh yang baik adalah perbedaan besar antara titik didih antara berbagai gugus senyawa organik yang memiliki massa molekul sama tetapi gugus fungsi yang berbeda (Tabel 7.1). Titik didih air yang tinggi adalah contoh lain yang baik (Bab 3.4, bab 7.3).

Tabel 7.1 Titik didih beberapa senyawa organik.
senyawa Td (°C) senyawa Td (°C)
pentana C5H12 36,11 butanol C4H9OH 108
heksana C6H14 68,74 dietil eter C2H5OC2H5 34,5
oktana C8H718 125,7 metil propil eterpropileter
(CH3OC3H7) 39

Energi yang diperlukan untuk mengubah cairan menjadi gas pada STP12 (0°C, 1 atm) disebut dengan kalor penguapan. Bila gas mengembun menjadi cairan, sejumlah sama kalor akan dilepaskan. Kalor ini disebut dengan kalor kondensasi.

Tabel 7.2 Titik didih dan kalor penguapan berbagai beberapa cairan.
Zat Titik didih (°C) Kalor penguapan (J mol-1)
H2 -252.8 904
CS2 46.4 26780
CHCl3 61 29500
CCl4 77 36600
C2H5OH 78 38570
C6H6 80 30760
H2O 100 46670
CH3COOH 118 24390

Terdapat beberapa zat yang cenderung terdekomposisi secara perlahan dengan pemanasan. Beberapa zat seperti ini sukar diuapkan, walaupun zat-zat ini berwujud cair pada temperatur kamar, sebab akan terdekomposisi sebelum mencapai titik didih. Jadi, tidak semua zat memiliki titik didih normal.

Proses penguapan cairan dan mengkondensasikan uapnya di wadah lain dengan pendinginan disebut dengan distilasi. Metoda ini paling sering digunakan untuk memurnikan cairan. Asal mula teknik distilasi dapat dirunut dari zaman alkemi. Campuran cairan dapat dipisahkan menjadi cairan komponennya menggunakan perbedaan titik didihnya. Teknik ini disebut sebagai distilasi fraksional (Bab 12.3).
Selingan-Vakum
Biasanya tidak mudah membuat dan mempertahankan vakum. Alat paling sederhana menghasilkan vakum adalah aspirator air, yang dapat ditemukan di laboratorium manapun sekolah tingkat pertama, menengah. Vakum terbaik didapatkan dengan aspirator adalah tekanan uap air pada suhu tersebut. Alat yang lebih rumit adalah pompa rotary minyak yang dapat menghasilkan vakum 5 x10-1 Torr.

Dengan bantuan pompa difusi minyak yang kuat atau pompa difusi merkuri, vakum sampai 10-3 Torr atau lebih baik dapat dihasilkan. Tidak mudah mempertahankan vakum. Tanpa pemeliharaan jalur vakum dengan telititi dan baik, Anda tidak dapat mendapatkan vakum yang seharusnya dapat dicapai alat tersebut.

Ketika mendestilasi zat yang cenderung terdekomposisi bila mencapai titik didih, distilasi mungkin dapat dilakukan dalam sistem yang tertutup dalam vakum. Titik didih akan menjadi lebih rendah bergantung pada derajat vakum yang dicapai. Teknik ini disebut distilasi vakum.
c. Titik beku

Bila temperatur cairan diturunkan, energi kinetik molekul juga akan menurun, dan tekanan uapnya pun juga akan menurun. Ketika temperatur menurun sampau titik tertentu, gaya antarmolekulnya menjadi dominan, dan gerak translasi randomnya akan menjadi lebih perlahan. Sebagai akibatnya, viskositas cairan menjadi semakin bertambah besar. Pada tahap ini, kadang molekul akan mengadopsi susunan geometri reguler yang disebut dengan keadaan padatan kristalin. Umumnya titik beku sama dengan titik leleh, yakni suhu saat bahan berubah dari keadaan padat ke keadaan cair.

Kesetimbangan fasa dan diagram fasa

, 0 komentar

Kesetimbangan fasa dan diagram fasa

Selama ini pembahasan perubahan mutual antara tiga wujud materi difokuskan pada keadaan cair. Dengan kata lain, perhatian telah difokuskan pada perubahan cairan dan padatan, dan antara cairan dan gas. Dalam membahas keadaan kritis zat, akan lebih tepat menangani tiga wujud zat secara simultan, bukan membahas dua dari tiga wujud zat.



Gambar 7.5 Diagram fasa. Tm adalah titik leleh normal air, , T3 dan P3 adalah titik tripel, Tb adalah titik didih normal, Tc adalah temperatur kritis, Pc adalah tekanan kritis.

Diagram fasa merupakan cara mudah untuk menampilkan wujud zat sebagai fungsi suhu dan tekanan. Sebagai contoh khas, diagram fasa air diberikan di Gambar 7.5. Dalam diagram fasa, diasumsikan bahwa zat tersebut diisolasi dengan baik dan tidak ada zat lain yang masuk atau keluar sistem.

Pemahaman Anda tentang diagram fasa akan terbantu dengan pemahaman hukum fasa Gibbs, hubungan yang diturunkan oleh fisikawan-matematik Amerika Josiah Willard Gibbs (1839-1903) di tahun 1876. Aturan ini menyatakan bahwa untuk kesetimbangan apapun dalam sistem tertutup, jumlah variabel bebas-disebut derajat kebebasan F- yang sama dengan jumlah komponen C ditambah 2 dikurangi jumlah fasa P, yakni,

F=C+2-P … (7.1)

Jadi, dalam titik tertentu di diagram fasa, jumlah derajat kebebasan adalah 2 – yakni suhu dan tekanan; bila dua fasa dalam kesetimbangan-sebagaimana ditunjukkan dengan garis yang membatasi daerah dua fasa hanya ada satu derajat kebebasan-bisa suhu atau tekanan. Pada ttik tripel ketika terdapat tiga fasa tidak ada derajat kebebasan lagi. Dari diagram fasa, Anda dapat mengkonfirmasi apa yang telah diketahui, dan lebih lanjut, Anda dapat mempelajari apa yang belum diketahui. Misalnya, kemiringan yang negatif pada perbatasan padatan-cairan memiliki implikasi penting sebagaimana dinyatakan di bagian kanan diagram, yakni bila tekanan diberikan pada es, es akan meleleh dan membentuk air. Berdasarkan prinsip Le Chatelier, bila sistem pada kesetimbangan diberi tekanan, kesetimbangan akan bergeser ke arah yang akan mengurangi perubahan ini. Hal ini berarti air memiliki volume yang lebih kecil, kerapatan leb besar daripada es; dan semua kita telah hafal dengan fakta bahwa s mengapung di air.

Sebaliknya, air pada tekanan 0,0060 atm berada sebagai cairan pada suhu rendah, sementara pada suhu 0,0098 °C, tiga wujud air akan ada bersama. Titik ini disebut titik tripel air. Tidak ada titik lain di mana tiga wujud air ada bersama.

Selain itu, titik kritis (untuk air, 218 atm, 374°C), yang telah Anda pelajari, juga ditunjukkan dalam diagram fasa. Bila cairan berubah menjadi fasa gas pada titik kritis, muncul keadaan antara (intermediate state), yakni keadaan antara cair dan gas. Dalam diagram fasa keadaan di atas titik kritis tidak didefinisikan.

Larutan

, 0 komentar

Larutan

Sampai di sini, yang telah dibahas adalah, cairan satu komponen, yakni cairan murni. Fasa cair yang berupa sistem dua atau multi komponen, yakni larutan juga sangat penting. Larutan terdiri atas cairan yang melarutkan zat (pelarut) dan zat yang larut di dalamnya (zat terlarut). Pelarut tidak harus cairan, tetapi dapat berupa padatan atau gas asal dapat melarutkan zat lain. Sistem semacam ini disebut sistem dispersi. Untuk sistem dispersi, zat yang berfungsi seperti pelarut disebut medium pendispersi, sementara zat yang berperan seperti zat terlarut disebut dengan zat terdispersi (dispersoid).

Baik pada larutan ataupun sistem dispersi, zat terlarut dapat berupa padatan, cairan atau gas. Bahkan bila zat terlarut adalah cairan, tidak ada kesulitan dalam membedakan peran pelarut dan zat terlarut bila kuantitas zat terlarut lebih kecul dari pelarut. Namun, bila kuantitas zat terlarut dan pelarut, sukar untuk memutuskan manakah pelarut mana zat terlarut. Dalam kasus yang terakhir ini, Anda dapat sebut komponen 1, komponen 2, dst.
a. Konsentrasi

Konsentrasi larutan didefinisikan dengan salah satu dari ungkapan berikut:

Ungkapan konsentrasi

1. persen massa (%) =(massa zat terlarut/ massa larutan) x 100
2. molaritas (konsentrasi molar) (mol dm-3) =(mol zat terlarut)/(liter larutan)
3. molalitas (mol kg-1) =(mol zat teralrut)/(kg pelarut)

Contoh soal

Hitung jumlah perak nitrat AgNO3 yang diperlukan untuk membuat 0,500 dm3 larutan 0,150 mol.dm-3, asumsikan massa molar AgNO3 adalah 170 g mol-1.

Jawab

Bila jumlah perak nitrat yang diperlukan x g, x = [170 g mol-1 x 0,500 (dm3) x 0,150 (mol dm-3)]/[1 (dm3) x 1 (dm3)]

∴x = 12,8 mg.
b. Tekanan uap

Tekanan uap cairan adalah salah satu sifat penting larutan. Tekanan uap larutan juga penting dan bermanfaat untuk mengidentifikasi larutan. Dalam hal sistem biner, bila komponennya mirip ukuran molekul dan kepolarannya, misalnya benzen dan toluen, tekanan uap larutan dapat diprediksi dari tekanan uap komponennya. Hal ini karena sifat tekanan uap yang aditif. Bila larutan komponen A dan komponen B dengan fraksi mol masing-masing adalah xA dan xB berada dala kesetimbangan dengan fasa gasnya tekanan uap masing-masing komponen sebanding dengan fraksi molnya dalam larutan. Tekanan uap komponen A, pA,diungkapkan sebagai:

pA = pA0 xA … (7.2)

pA0 adalah tekanan uap cairan A murni pada suhu yang sama. Hubungan yang mirip juga berlaku bagi tekanan uap B, pB. Hubungan ini ditemukan oleh kimiawan Perancis Francois Marie Raoult (1830-1901) dan disebut dengan hukum Raoult. Untuk larutan yang mengikuti hukum Raoult, interaksi antara molekul individual kedua komponen sama dengan interaksi antara molekul dalam tiap komponen. Larutan semacam ini disebut larutan ideal. Gambar 7.6 menunjukkan tekanan uap larutan ideal sebagai fungsi konsentrasi zat teralrut. Tekanan total campuran gas adalah jumlah pA dan pB, masing-masing sesuai dengan hukum Raoult.



Gambar 7.6 Tekanan total dan parsial larutan ideal.

Contoh soal 7.3

Tekanan uap cairan A dan B adalah 15 Torr dan 40 Torr pada 25°C. tentukan tekanan uap larutan ideal yang terdiri atas 1 mol A dan 5 mol of B.

Jawab

pA = pA0 xA = 15 x (1/6) = 2,5 Torr

pB = pB0 xB = 40 x (5/6) = 33,3 Torr P = pA + pB = 35,8 Torr
c. Larutan ideal dan nyata

Sebagaimana juga perilaku gas nyata berbeda dengan perilaku gas ideal, perilaku larutan nyata berebeda dengan perilaku larutan ideal, dengan kata lain berbeda dari hukum Raoult. Gambar 7.7(a) menunjukkan kurva tekanan uap sistem biner dua cairan yang cukup berbeda polaritasnya, aseton Me2CO dan karbon disulfida CS2. Dalam hal ini, penyimpangan positif dari hukum Raoult (tekanan uap lebih besar) diamati. Gambar 7.7(b) menunjukkan tekanan uap sistem biner aseton dan khloroform CHCl3. Dalam kasus ini, penyimpangan negatif dari hukum Raoult diamati. Garis putus-putus menunjukkan perilaku larutan ideal. Peilaku larutan mendekati ideal bila fraksi mol komponen mendekati 0 atau 1. Dengan menjauhnya fraksi mol dari 0 atau 1, penyimpangan dari ideal menjadi lebih besar, dan kurva tekanan uap akan mencapai minimum atau maksimum.



Gambar 7.7 Tekanan total dan parsial larutan nyata (25°C).

Penyebab penyimpangan dari perilaku ideal sebagian besar disebabkan oleh besarnya interaksi molekul. Bila pencampuran komponen A dan B menyebabkan absorpsi kalor dari lingkungan (endoterm), interaksi molekul antara dua komponen lebih kecil daripada pada masing-masing komponen, dan penyimpangan positif dari hukum Raoult akan terjadi. Sebaliknya, bila pencampuran menghasilkan kalor ke lingkungan (eksoterm), penyimpangan negatif akan terjadi.

Bila ikatan hidrogen terbentuk antara komponen A dan komponen B, kecenderungan salah satu komponen untuk meninggalkan larutan (menguap) diperlemah, dan penyimpangan negatif dari hukum Raoult akan diamati. Kesimpulannya, penyebab penyimpangan dari hukum Raoult sama dengan penyebab penyimpangan dari hukum gas ideal.
d. Kenaikan titik didih dan penurunan titik beku

Bila dibandingkan tekanan uap larutan pada suhu yang sama lebih rendah dari tekanan uap pelarutnya. Jadi, titik didih normal larutan, yakni suhu saat fasa gas pelarut mencapai 1 atm, harus lebih tinggi daripada titik didih pelarut. Fenomena ini disebut dengan kenaikan titik didih larutan.

Dengan menerapkan hukum Raoult pada larutan ideal, kita dapat memperoleh hubungan berikut:

pA = pA0 xA = pA0 [nA /(nA + nB)] …. (7.3)

(pA0- pA)/ pA0 = 1 – xA = xB … (7.4)

xA dan xB adalah fraksi mol, dan nA dan nB adalah jumlah mol tiap komponen. Persamaan ini menunjukkan bahwa, untuk larutan ideal dengan zat terlarut tidak mudah menguap, penurunan tekanan uap sebanding dengan fraksi mol zat terlarut.

Untuk larutan encer, yakni nA + nB hampir sama dengan nA, jumlah mol nB dan massa pada konsentrasi molal mB diberikan dalam ungkapan.

xB = nB/(nA + nB) = nB/nA= nB/(1/MA) = MAmB … (7.5)

MA adalah massa molar pelarut A. Untuk larutan encer, penurunan tekanan uap sebanding dengan mB, massa konsentrasi molal zat terlarut B.

Perbedaan titik didih larutan dan pelarut disebut dengan kenaikan titik didih, Tb. Untuk larutan encer, kenaikan titik didih sebanding dengan massa konsentrasi molal zat terlarut B.

Tb = Kb mB … (7.6)

Tetapan kesebandingan Kb khas untuk setiap pelarut dan disebut dengan kenaikan titik didih molal.

Hubungan yang mirip juga berlaku bila larutan ideal didinginkan sampai membeku. Titik beku larutan lebih rendah dari titik beku pelarut. Perbedaan antara titik beku larutan dan pelarut disebut penurunan titik beku, Tf. Untuk larutan encer penurunan titik beku akan sebanding dengan konsentrasi molal zat terlarut mB

Tf = Kf mB … (7.7)

Tetapan kesebandingannya Kb khas untuk tiap pelarut dan disebut dengan penurunan titik beku molal.

Tabel 7.3 Kenaikan titik didih dan penurunan titik beku molal.
pelarut titik didih (°C) Kb pelarut titik beku (°C) Kf
CS2 46 2.40 H2O 0 1.86
aseton 55,9 1,69 benzen 5,1 5,07
benzen 79,8 2,54 asam asetat 16,3 3,9
H2O 100 0,51 kamfer 180 40

Di Tabel 7.3 beberapa nilai umum kenaikan titik didih dan penurunan titik beku molal diberikan. Dengan menggunakan nilai ini dan persamaan 7.6 dan 7.7 dimungkinkan untuk menentukan massa molar zat terlarut yang belum diketahui. Kini, penentuan massa molekul lebih mudah dilakukan dengan spektrometer massa. Sebelum spektrometer massa digunakan dengan rutin, massa molekul umumnya ditentukan dengan menggunakan kenaikan titik didih atau penurunan titik beku. Untuk kedua metoda, derajat kesalahan tertentu tak terhindarkan, dan keterampilan yang baik diperlukan agar didapatkan hasil yang akurat.

Contoh soal 7.4 Penentuan massa molekul dengan metoda penurunan titik beku.

Larutan dalam air terdiri atas 100 g H2O dan 5,12 g zat A (yang massa molekulnya tidak diketahui) membeku pada -0,280°C. Dengan menggunakan data di Tabel 7.3, tentukan massa molar A.

Jawab

Massa molar A andaikan M. Dengan menggunakan persamaan 7.7, M dapat ditentukan dengan

0,280 = Kf x (m/M) x (1/W) = 1,86 x (5,12/M) x (1/0,11)

∴ M = 340 g mol-1.
e. Tekanan osmosis

Membran berpori yang dapat dilalui pelarut tetapi zat terlarut tidak dapat melaluinya disebut dengan membran semipermeabel. Bila dua jenis larutan dipisahkan denga membran semipermeabel, pelarut akan bergerak dari sisi konsentrasi rendah ke sisi konsentrasi tinggi melalui membran. Fenomena ini disebut osmosis. Membran sel adalah contoh khas membran semipermeabel. Membran semipermeabel buatan juga tersedia.

Bila larutan dan pelarut dipisahkan membran semipermeabel, diperlukan tekanan yang cukup besar agar pelarut bergerak dari larutan ke pelarut. Tekanan ini disebut dengan tekanan osmosis. Tekanan osmosis larutan 22,4 dm3 pelarut dan 1 mol zat terlarut pada 0 °C adalah 1,1 x 105 N m-2.

Hubungan antara konsentrasi dan tekanan osmoisi diberikan oleh hukum van’t Hoff’s.

πV = nRT … (7.8)

π adalah tekanan osmosis, V volume, T temperatur absolut, n jumlah zat (mol) dan R gas. Anda dapat melihat kemiripan formal antara persamaan ini dan persamaan keadaan gas. Sebagaimana kasus dalam persamaan gas, dimungkinkan menentukan massa molekular zat terlarut dari hubungan ini.

Contoh soal 7.5 hukum van’t Hoff

Tekanan osmosis larutan 60,0 g zat A dalam 1,00 dm3 air adalah 4,31 x 105 Nm–2. Tentukan massa molekul A.

Jawab

Dengan menggunakan hubungan πV = nRT

4,31 x 105 (N m-2) x 1,00 x 10-3 (m3) = [60,0 (g) x 8,314 (J mol-1 K-1) x 298 (K)]/M (g mol–1)

∴ M = 345 (g mol-1)
f. Viskositas

Gaya tarik menarik antarmolekul yang besar dalam cairan menghasilkan viskositas yang tinggi. Koefisien viskositas didefinisikan sebagai hambatan pada aliran cairan. Gas juga memiliki viskositas, tetapi nilainya sangat kecil. Dalam kasus tertentu viskositas gas memiliki peran penting, misalnya dalam peawat terbang.

Viskositas

1. Viskositas cairan yang partikelnya besar dan berbentuk tak teratur lebih tinggo daripada yang partikelnya kecil dan bentuknya teratur.
2. Semakin tinggi suhu cairan, semakin kecil viskositasnya.

Dua poin ini dapat dijelaskan dengan teori kinetik. Tumbukan antara partikel yang berbentuk bola atau dekat dengan bentuk bola adalah tumbukan elastik atau hampir elastik. Namun, tumbukan antara partikel yang bentuknya tidak beraturan cenderung tidak elastik. Dalam tumbukan tidak elastik, sebagian energi translasi diubah menjadi energi vibrasi, dan akibatnya partikel menjadi lebih sukar bergerak dan cenderung berkoagulasi. Efek suhu mirip dengan efek suhu pada gas.

Koefisien viskositas juga kadang secara singkat disebut dengan viskositas dan diungkapkan dalam N s m-2 dalam satuan SI. Bila sebuah bola berjari-jari r bergerak dalam cairan dengan viskositas ηdengan kecepatan U, hambatan D terhadap bola tadi diungkapkan sebagai.

D = 6πhrU … (7.9)

Hubungan ini (hukum Stokes) ditemukan oleh fisikawan Inggris Gabriel Stokes (1819-1903).
g. Tegangan permukaan

Tegangan permukaan juga merupakan sifat fisik yang berhubungan dengan gaya antarmolekul dalam cairan dan didefinisikan sebagai hambatan peningkatan luas permukaan cairan. Awalnya tegangan permukaan didefinisikan pada antarmuka cairan dan gas. Namun, tegangan yang mirip juga ada pada antarmuka cairan-cairan, atau padatan dan gas. Tegangan semacam ini secara umum disebut dengan tegangan antarmuka. Tarikan antarmolekul dalam dua fas dan tegangan permukaan di antarmuka antara dua jenis partikel ini akan menurun bila tempeartur menurun. Tegangan antarmuka juga bergantung pada struktur zat yang terlibat. Molekul dalam cairan ditarik oleh molekul di sekitarnya secara homogen ke segala arah. Namun, molekul di permukaan hanya ditarik ke dalam oleh molekul yang di dalam dan dengan demikian luas permukaan cenderung berkurang. Inilah asal mula teori tegangan permukaan. Bentuk tetesan keringat maupun tetesan merkuri adalah akibat adanya tegangan permukaan.

Cairan naik dalam kapiler, fenomena kapiler, juga merupakan fenomena terkenal akibat adanya tegangan permukaan. Semakin besar tarikan antar molekul cairan dan kapilernya, semakin besar daya basah cairan. Bila gaya gravitasi pada cairan yang naik dan tarikan antara cairan dan dinding kapiler menjadi berimbang, kenaikan akan terhenti. Tegangan permukaan γ diungkapkan sebagai.

γ = rhdg/2 …. (7.10)

h adalah tinggi kenaikan cairan, r radius kapiler dan g percepatan gravitasi. Jadi, tegangan permukaan dapat ditentukan dengan percobaan.

Latihan

7.1 Perbandingan titik didih

Susunlah senyawa-senyawa berikut dalam urutan titik didihnya: C2H6, NH3, F2

7.1 Jawab NH3 > C2H6 > F2

7.2 Diagram fasa

Gambar 7.8 adalah diagram fasa zat tertentu. Tunjukkan fasa zat yang ada di daerah A, B, C dan H dan fasa yang ada di titik D, E, F dan G dan tunjukkan titik mana yang menyatakan titik tripel, titik didih normal, titik beku normal, dan titik kritis.



7.2 Jawab

A: padat, B: cair,C: uap (gas), D: padat + uap, E: padat+ cair +uap,F: cair + uap, G:cair + uap, H: uap; titik tripel: E; G: titik beku normal: titik pada kurva fasa cair-padat pada 1 atm, H: titik didih normal: titik pada garis cair-gas pada 1 atm.

7.3 Konsentrasi larutan

Kerapatan asam sulfat encer (persen massa 12,00%) adalah 1,078 g cm-3 (25°C). Nyatakan kosentrasi larutan ini dalam molar, molal dan fraksi mol.

7.3 Jawab

Jumlah H2SO4 alam 100 g asam sulfat encer tersebut adalah 12,00/98,08 = 0,1223 mol,dan jumlah airnya adalah 88,00/18,0 = 4,889 mol.

Jadi fraksi mol H2SO4 adalah 0,1223/(4,889+0,122) = 0,0244.

Karena 88,00 g H2O melarutkan 0,1223 mol H2SO4, jumlah mol H2SO4 yang larut dalam 1 kg H2O, adalah 0,1223 mol x (1000 g kg–1)/(88,00 g) = 1,390 mol kg–1. Jadi konsentrasi asam sulfat encer tersebut 1,390 m.

Jumlah H2SO4 yang terlarut dalam 1 dm3 asam sulfat encer (molar) adalah 0,1223 mol x (1078 g dm–3)/(100 g) = 1,318 mol dm–3.

7.4 Hukum Raoult

Gliserin adalah cairan tidak mudah menguap. Larutan 164 g gliserin dan 338 cm3 H2O (kerapatan 0,992 g cm3) disimpan pada 39,8°C. Pada suhu ini, tekanan uap air murni adalah 54,74 torr. Hitung tekanan uap larutan ini.

7.4 Jawab

Jumlah gliserin adalah 1,78 mol dan H2O adalah 18,63 mol. p = 54,74 x (18,63/(18,63+1,78)) = 54,74 x 0,913 =50,00 (Torr)

7.5 Kenaikan titik didih

Bila 0,358 g sulfur dilarutkan dalam 21,5 g CS2, titik didihnya naik sebesar 0,151 K. Sarankan struktur sulfur dalam larutan.

7.5 Jawab

Massa sulfur = (2,40 K kg mol–1)(0,358/1000 kg)/(0,151 K)(21,5/1000 kg) = 0,264 kg mol-1 .

Karena 32 x 8 = 256 ≅ 264, sulfur terlarut sebagai S8.

7.6 Tekanan osmosis

Tekanan osmosis larutan dalam air (100 cm3) yang mengandung 0,36 g polimer adalah 3,26 x 102 Pa pada 23°C.

(1) tentukan massa molekul polimer ini.
(2) apakah akan praktis menentukan massa molekul polimer ini dengan metoda penurunan titik beku atau kenaikan titik didih?

7.6 Jawab

(1)M =[(8,31 J mol-1 K -1) x (296 K)x(3,6 kg m-3)]/(3,26 x 102 Pa) = 2,7 kg mol-1 = 2,7 x 104 gmol– .M = 2,7 x 104 .

(2) kenaikan titik didih larutan yang sama akan sebesar 0,693 x 10-4 K, dan penurunan titik bekunya adalah 2,48 x 10–4 K. Perubahan temperatur yang sangat kecil ini sukar ditentukan dengan akurat. Kedua metoda ini tidak praktis untuk menentukan massa molekul polimer.

7.7 Tegangan permukaan

Manakah dari pasangan dua zat berikut yang memiliki tegangan permukaan lebih besar: C6H14 atau H2O?

7.7 Jawab
H2O. Tingginya tegangan permukaan air sudah sangat terkenal.

Lambang Unsur

, 0 komentar

Lambang Unsur

Kita sudah mengenal nama-nama unsur, tentunya cukup sulit jika kita menggunakan nama unsur dalam mempelajari ilmu kimia, tentunya kita perlu melakukan penyederhanaan agar lebih mudah diingat.

Pencetus ide lambang unsur adalah Jons Jacob Berzelius pada tahun 1813. Dia mengusulkan pemberian lambang kepada setiap unsur dengan huruf. Pemilihan lambang unsur diambil dari huruf pertama (huruf besar atau kapital) dari unsur tersebut. Perhatikan nama unsur berikut, oksigen dilambangkan dengan huruf O (kapital), carbon dengan C (kapital) dan nitrogen yang diberi lambang dengan huruf N (kapital), Gambar 2.3.



Gambar 2.3. Penamaan lambang unsur dengan menggunakan huruf kapital dari nama unsurnya

Banyak nama unsur yang daiawali dengan huruf yang sama misalnya hudrogen dengan hidrargirum, tidak mungkin menggunakan satu huruf awal dari kedua unsur tersebut. Sehingga penamaan unsur dapat dilambangkan dengan menggunakan lebih dari satu huruf.

Penulisan dapat dilakukan dengan menggunakan huruf kapital dari nama unsur sebagai huruf pertamanya, dilanjutkan dengan menuliskan huruf kecil dari salah satu huruf yang ada pada unsur tersebut. Untuk lebih mudahnya kita ambil contoh di bawah ini unsur Zinc dilambangkan dengan Zn dan cuprum dengan huruf Cu.

Beberapa kasus menarik terjadi, misalnya untuk unsur argon dan argentums, kedua unsur ini memiliki huruf pertama yang sama, dalam penamaannya huruf keduanya menjadi pembeda. Untuk argon dilambangkan dengan Ar, sedangkan argentum dilambangkan dengan Ag, perhatikan Gambar 2.4. Kasus lainnya adalah unsur cobalt, dilambangkan dengan huruf Co, jika kita tidak hati-hati dalam penulisannya dan ditulis dengan CO yang berarti gas carbon monoksida.



Gambar 2.4. Pelambangan unsur menggunakan dua huruf dari nama unsur tersebut

Nama Unsur

, 0 komentar

Nama Unsur

Nama unsur yang kita kenal dalam bahasa Indonesia belum tentu sama dengan nama unsur baku yang ditetapkan oleh International Union of Pure and applied Chemistry (IUPAC) yang kita kenal kadang-kadang berbeda, misalnya tembaga nama kimia yang menurut IUPAC adalah Cuprum, demikian juga emas adalah aurum.

Nama unsur diambil dari nama satu daerah seperti germanium (Jerman), polonium (Polandia), Fransium (Perancis), europium (Eropa), amerisium (Amerika), kalifornium (Kalifornia), stronsium (Strontia, Scotlandia) lihat Gambar 2.2. ilmuan yang berjasa didalam bidang kimia juga digunakan seperti: einstenium (Einstein), curium (Marie dan P Curie), fermium (Enrico Fermi), nobelium (Alfred Nobel). Nama-nama planet juga diabadikan sebagai nama unsur seperti: uranium (Uranus), plutonium (Pluto), dan neptunium (Neptunus).

Untuk beberapa unsur yang baru ditemukan, khususnya untuk unsur dengan nomor 104 keatas mempergunakan akar kata dari bilangan.

nil = 0, un = 1, bi = 2, tri = 3 quad =4, pent = 5, hex = 6, sept = 7, okt = 8 dan enn = 9.

Untuk lebih jelasnya kita ambil contoh untuk unsur dengan nomor 107 yaitu unnilseptium, yang berasal dari bilangan 1 : un, bilangan 0 : nil, dan tujuh : sept serta + ium, sehingga nama unsur tersebut adalah unilseptium (Uns).

Unsur

, 1 komentar

Unsur

Dalam Bab 1, kita telah membahas tentang unsur dan senyawa sebagai zat tunggal. Pada bab ini kita akan membahas secara detil tentang unsur dan senyawa.

Unsur merupakan zat tunggal yang tidak dapat diuraikan lagi menjadi zat-zat lain yang lebih sederhana dengan reaksi kimia biasa. Dalam kehidupan sehari-hari kita mudah menjumpai dan mengenal unsur. Arang yang berwarna hitam, kita jumpai pada sisa pembakaran, pinsil dan juga digunakan sebagai elektroda dalam batere, arang adalah unsur karbon. Logam juga dapat kita jumpai dalam bentuk perhiasan emas, perak dan platina. Selain itu beberapa logam lain didapat dari barang tambang yang ada di Indonesia seperti alumunium di Asahan, timah di Bangka, besi di Sulawesi, tembaga di Timika dan nikel di Soroako. Contoh unsur logam cadmium, air raksa dan timah hitam disajikan pada Gambar 2.1.



Gambar 2.1. Contoh unsur logam, A unsur cadmium, B air raksa dan C adalah timah hitam.

Senyawa di Alam

, 0 komentar

Senyawa di Alam

Dalam kehidupan sehari-hari kita mendapatkan senyawa kimia dalam dua golongan yaitu senyawa organik dan senyawa anorganik. Senyawa organik dibangun oleh atom utamanya karbon, sehingga senyawa ini juga dikenal dengan istilah hidrokarbon.

Senyawa hidrokarbon banyak terdapat di alam dan juga pada makhluk hidup, dimulai dari bahan bakar sampai dengan molekul yang berasal atau ditemukan dalam makhluk hidup seperti karbohidrat, protein,
lemak, asam amino dan lain-lain. Senyawa-senyawa ini akan dibahas secara detil pada bab selanjutnya.

Senyawa anorganik merupakan senyawa yang disusun oleh atom utama logam, banyak kita jumpai pada zat yang tidak hidup, misalnya tanah, batu-batuan, air laut dan lain sebagainya.

Senyawa anorganik dapat diklasifikasikan sebagai senyawa bentuk oksida asam basa dan bentuk garam lihat Gambar 2.9.



Gambar 2.9. Klasifikasi senyawa anorganik

Senyawa oksida merupakan senyawa yang dibentuh oleh atom oksigen dengan atom lainnya. Keberadaan atom oksigen sebagai penciri senyawa oksida.

Berdasarkan unsur pembentuk senyawa oksida senyawa oksida dapat dibedakan menjadi dua macam, yaitu senyawa oksida logam dan oksida bukan logam, penggolongan ini disederhanakan pada Gambar 2.10.



Gambar 2.10. Penggolongan senyawa oksida

Senyawa oksida logam merupakan senyawa yang dapat larut dalam air membentuk larutan basa. Di alam banyak ditemukan senyawa oksida, umumnya berupa bahan tambang. Dalam table 2.3 disajikan beberapa contoh senyawa oksida logam.
Tabel 2.3 Contoh dan penamaan oksida logam



Senyawa oksida bukan logam adalah senyawa yang dibentuk dari unsur bukan logam dengan oksigen, misalnya antara unsur nitrogen dengan oksigen. Senyawa oksida bukan logam dapat larut dalam air membentuk larutan asam.

Beberapa senyawa oksida bukan logam biasanya berbentuk gas, dalam Tabel 2,4 dibawah ini disajikan beberapa contoh senyawa oksida bukan logam.

Tabel 2.4 Contoh dan penamaan oksida bukan logam



Senyawa asam, adalah senyawa yang memiliki sifat-sifat seperti, rasanya masam, dapat menghantarkan kan arus listrik, dalam bentuk cair terionisasi dan menghasilkan ion hidrogen dan sisa asam.

Berdasarkan unsur-unsur pembentuknya terdapat tiga jenis asam, pertama asam yang dibentuk oleh unsur H, unsur bukan logam dan unsur O, kedua asam asam yang dibentuk oleh unsur H dengan unsur halogen lebih dikenal dengan asam halida dan yang ketiga asam pada senyawa organik yang disebut dengan karboksilat.

Beberapa contoh asam dengan jenis pertama seperti asam karbonat (H2CO3), yang disusun oleh 2 unsur H, 1 unsur C dan 3 unsur O. Jika asam ini terionisasi dihasailkan ion 2H+ dan ion CO32-. Contoh asam lainnya seperti asam fosfat, dan nitrat seperti pada Tabel 2.5.

Tabel. 2.5. Asam yang dibentuk dari Unsur H, unsur bukan logam dan unsur O.



Untuk mengetahui asam halida, kita perlu mengetahui unsur-unsur halogen yaitu unsur Flor, Klor, Brom, Iod dan lainnya. Asam halida, dapat terbentuk jika unsur berikatan dengan unsur Flor, Klor, Brom, atau Iod. Penamaannya dilakukan dengan memulai dengan kata asam dengan kata dari unsur halogen ditambahkan kata ida. Contoh untuk senyawa asam HF, namanya menjadi asam florida. Untuk lebih jelasnya perhatikan contoh asam ini pada Tabel 2.6.

Tabel. 2.6. Asam yang dibentuk dari unsur H, dengan unsur halogen



Untuk asam organik adalah senyawa karbon yang memiliki karboksilat (COOH), dimana senyawa organik merupakan senyawa yang memiliki kerangka atom karbon. Senyawa asam organik yang paling sederhana adalah H-COOH dikenal dengan asam formiat. yang memiliki satu atom karbon pada karboksilat disebut dengan asam asetat, penulisan dapat dilakukan dengan mengganti unsur H-nya saja sehingga H3C-COOH. Untuk lebih mudahnya kita perhatikan contoh asam-asam organik yang disajikan pada Tabel 2.7.

Senyawa basa, merupakan senyawa yang dibentuk oleh unsur logam dan dengan gugus hidroksida (OH).
Senyawa basa dapat dikenali karena memiliki beberapa sifat yang khas; terasa pahit atau getir jika dirasakan, di kulit dapat menimbulkan rasa gatal panas. Larutan basa dapat menghantarkan arus listrik, karena mengalami ionisasi. Hasil ionisasi berupa ion logam dan gugus OH-.

Tabel 2.7 Contoh dan penamaan oksida bukan logam



Beberapa senyawa basa yang mudah kita temukan seperti soda api atau Natrium hidroksida atau NaOH. Dalam larutan terionisasi menjadi Na+ dan OH-, contoh senyawa basa lainnya pada Tabel 2.8.

Tabel. 2.8. Senyawa basa dan penamaannya.



Senyawa garam, adalah senyawa yang dibentuk oleh unsur logam dan sisa asam. Senyawa garam memiliki rasa asin, dalam keadaan larutan senyawa ini dapat menghantarkan arus listrik kerena terjadi ionisasi. Senyawa garam NaCl, terionisasi menjadi ion Na+ dan ion sisa asam Cl-.
Lihat Tabel 2.9.

Tabel 2.9. Senyawa garam, ionnya dan namanya.

Molekul

, 0 komentar

Molekul

Molekul memiliki pengertian seperti halnya atom, yaitu partikel terkecil dari suatu senyawa. Jika suatu senyawa disusun oleh satu atau beberapa unsur, maka molekul tersusun dari satu atau beberapa atom.

Untuk senyawa yang disusun oleh satu unsur disebut dengan molekul unsur, ditunjukkan oleh senyawa diatomik seperti senyawa H2, dan O2. Sebuah molekul gas oksigen (O2) terdiri atas dua atom oksigen. Sedangkan senyawa yang disusun oleh beberapa unsur, bagian terkecilnya disebut dengan molekul senyawa, molekul semacam ini ditemui pada senyawa heteroatomik, seperti H2O, dan P2O5, N2O3. Kita ambil contoh molekul air, setiap satu molekul air tersusun dari satu atom oksigen dan dua atom hydrogen, perhatikan Gambar 2.11.



Gambar 2.11. Perbedaan molekul senyawa dan molekul unsur

Komposisi Senyawa

, 0 komentar

Komposisi Senyawa

Senyawa didefinisikan sebagai zat yang dibentuk dari berbagai jenis unsur yang saling terikat secara kimia dan memiliki komposisi yang tetap. Dari definisi di atas, kita dapat memahami bahwa sebuah senyawa hanya dapat terjadi jika komposisi senyawa tersebut tetap dan tepat. Kesimpulan ini diambil dari serangkaian percobaan antara gas hidrogen dengan gas oksigen.

Empat percobaan dilakukan dengan menggunakan massa gas hydrogen sebanyak 1, 1, 2 dan 2 gram, sedangkan gas oksigen yang dipergunakan adalah 8,16,8 dan 16 gram. Percobaan dan hasilnya disederhanakan Tabel 2.10.

Tabel 2.10. Percobaan dan hasil percobaan antara gas hidrogen dan oksigen



Dari eksperimen, pada percobaan pertama dengan data baris pertama; molekul air yang terjadi memiliki massa 9 gram, dengan komposisi massa 1 gram hidrogen dan 8 gram oksigen. Pada baris kedua dan ketiga air yang terjadi tetap 9 gram, yang berasal 1 gram hidrogen dan 8 gram oksigen. Kelebihan massa dari salah satu unsur, tidak dipergunakan sehingga terjadi sisa. Pada baris ke empat, air yang terbentuk 18 gram yang berasal dari 2 gram hidrogen dan 16 gram oksigen, pada percobaan ke empat rasio massa hidrogen dan oksigen sama dengan percobaan pertama yaitu 1 : 8 untuk hidrogen dan oksigen dalam membentuk senyawa air.

Dari eksperimen ini di atas dapat diambil kesimpulan bahwa perbandingan massa unsur-unsur dalam suatu senyawa adalah tetap. Pernyataan ini dikenal dengan hukum perbadingan tetap yang diajukakan oleh Proust dan sering disebut juga dengan Hukum Proust.

Rumus Kimia

, 0 komentar

Rumus Kimia

Kita telah membahas senyawa kimia, baik dari sisi lambang senyawa kimia, sampai dengan komposisi massa dari unsur penyusunnya yang selalu tetap. Lambang seyawa kimia HNO3, P2O5 dan H2O adalah rumus kimia suatu zat.

Rumus kimia menyatakan jenis dan jumlah relatif unsur atau atom yang menyusun suatu zat, dengan kata lain rumus kimia memberikan informasi tentang jenis unsur dan jumlah atau perbandingan atom-atom unsure penyusun zat.

Penulisan rumus kimia dilakukan dengan menyatakan lambang unsur dan angka indeks. Lambang unsur menunjukkan jenis unsur dan angka indeks menyatakan jumlah unsur yang menyusun senyawa tersebut. Untuk itu kita ambil contoh rumus kimia untuk asam sulfat yaitu H2SO4. Dari rumus kimia ini kita dapatkan informasi :

1. Unsur penyusunnya adalah Hidrogen (H),
Sulfur (S), dan Oksigen.
2. Banyak unsur penyusun asam sulfat adalah;
2 unsur H, 1 unsur S dan 4 unsur O.
3. Jika hanya terdapat satu unsur, maka indeks
tidak perlu dituliskan.

Contoh lain pengertian dari rumus kimia disajikan pada Gambar 2.12.



Gambar 2.12. Contoh rumus kimia yang memberikan jenis unsur dan jumlah unsur penyusunnya

Rumus Molekul

, 0 komentar

Rumus Molekul

Rumus kimia dapat dibagi menjadi dua yaitu rumus molekul dan rumus empiris. Pembagian ini terkait dengan informasi yang dikandungnya.

Rumus molekul adalah rumus kimia yang memberikan informasi secara tepat tentang jenis unsur pembentuk satu molekul senyawa dan jumlah atom masing-masing unsur. Misalnya satu molekul senyawa glukosa dengan rumus molekul C6H12O6, tersusun atas unsur karbon, hidrogen, dan oksigen.

Banyaknya atom penyusun satu molekul glukosa adalah 6 atom karbon (C), 12 atom Hidrogen (H) dan 6 atom Oksigen (O).

Perhatikan contoh lainya, misalnya Vanili C8H8O3 yang juga memiliki unsure penyusun yang sama dengan glukosa, tatapi jumlah atom penyusunnya berbeda.

Vanili mengandung 8 atom karbon, 8 atom hidrogen, dan 3 atom oksigen. Akibat perbedaan jumlah atom penyusunnya maka gula dengan vanili memiliki sifat berbeda. Contoh lainnnya adalah Asam cuka yang sering dipergunakan untuk memassak. Asam cuka memiliki rumus C2H4O2, unsur-unsur penyusunnya sama dengan glukosa, vanili. Sifat dari ketiga zat ini sangat berbeda, untuk asam cuka komposisi dari atom-atom penyusunnya adalah 2 atom karbon, 4 atom H dan 2 atom O.
Contoh lainnya lihat Tabel 2.11.



Tabel 2.11. Contoh rumus molekul untuk zat-zat yang ada dalam lingkungan sekitar kita

Persamaan Reaksi dan Penyetaraan Reaksi Kimia

, 0 komentar

Persamaan Reaksi

Setiap perubahan kimia yang terjadi, misalnya kertas terbakar, besi berubah menjadi berkarat atau yang lainnya, harus dapat kita tuliskan secara sederhana agar dapat dengan mudah dimengerti. Oleh sebab itu perubahan-perubahan kimia diubah menjadi persamaan reaksi.

Persamaan reaksi didefinisikan sebagai penulisan suatu reaksi atau perubahan kimia yang mengacu pada hukum-hukum dasar kimia.

Penulisan persamaan reaksi memberikan kesederahanaan tentang sebuah reaksi. Misalnya jika kita mereaksikan antara larutan timah hitam nitrat dengan kalium iodida (Gambar 2.13). Persamaan reaksinya dapat dituliskan dengan tanda-tanda yang menyertainya seperti dibawah ini :



Reaksi timah

Gambar. 2.13. Mereaksikan Timah hitam nitrat dengan kalium iodida dan membentuk endapan kuning

Pb(NO3)2(aq) + 2Kl(aq) → Pbl2(s) + 2KNO3(aq)

Penyederhanaan menggunakan istilah-istilah seperti;

+ (ditambah) “bereaksi dengan”
→ (tanda panah) yang dibaca “menghasilkan”

dan keterangan tentang zat-zat yang terlibat dalam reaksi kimia adalah;

(s) padatan (s = solid),
(g) gas (g = gas),
(l) cairan atau leburan (l = liquid),
(aq) terlarut dalam air (aq = aquous).

Persamaan reaksi di atas, dibaca dengan “Pb-nitrat yang terlarut dalam air bereaksi dengan kalium iodida yang terlarut dalam air menghasilkan Pb-iodida berbentuk endapan dan kalium nitrat yang terlarut dalam air.

Penyetaraan Reaksi Kimia

Dasar untuk penyetaraan reaksi kimia adalah hukum kekalan massa yang diajukan oleh Lavoiser, dan dinyatakan”Dalam sebuah reaksi, massa zat-zat sebelum bereaksi sama dengan massa zat sesudah bereaksi”. Hal ini menunjukkan kepada kita bahwa tidak ada massa yang hilang selama berlangsung reaksi.

Dalam persamaan reaksi kimia terdapat dua daerah, daerah dimana zat sebelum bereaksi di sebelah kiri tanda panah dan daerah dimana zat telah bereaksi di sebelah kanan tanda panah. Untuk lebih mudahnya perhatikan bagan reaksi 2.14.

Bagan. 2.14. Bagan reaksi yang menyatakan zat sebelum dan sesudah reaksi

bagan 2.14



Di kedua daerah tersebut, kita akan mendapatkan informasi bahwa zat sebelum dan sesudah reaksi adalah sama, kesamaan ini dapat ditunjukkan dengan kesetaraan jumlah atom, atau jumlah massa. Contoh di bawah ini dapat menjelaskan informasi apa saja yang kita dapat dari sebuah persamaan reaksi

C + O2 → CO2

Persamaan reaksi ini benar jika jumlah atom karbon di sebelah kiri tanda panah (sebelum bereaksi) sama dengan jumlah atom sebelah kanan tanda panah (sesudah reaksi). Demikian pula dengan atom Oksigen sebelum dan sesudah reaksi adalah sama. Lihat bagan reaksi 2.15.

Bagan 2.15. Bagan reaksi menjelaskan komposisi jumlah atom di sebelah kiri dan kanan tanda panah

bagan 2.15



Dari gambar tampak bahwa jumlah atom C di sebelah kiri dan kanan adalah sama, sebanyak 1 buah. Demikian pula untuk atom O jumlahnya sama yaitu 2 buah. Dengan demikian persamaan reaksi ini sudah benar.

Informasi lain adalah jumlah massa Karbon dan Oksigen sebelum dan sesudah reaksi adalah sama, misalnya terdapat 12 gram karbon dan 32 gram oksigen sebelum bereaksi, berdasarkan kesetaraan jumlah atom yang sama, maka secara otomatis jumlah zat yang terjadi juga memiliki komposisi massa yang sama. Senyawa CO2, mengandung 12 gram C dan 32 gram O, perhatikan persamaan reaksi pada bagan reaksi 2.16.

Bagan 2.16. Bagan reaksi yang menggambarkan kesetaraan massa dari atom C dan O di sebelah kiri dan kanan tanda panah

bagan 2.16



Umumnya persamaan reaksi dituliskan belum sempurna, dimana jumlah atom sesudah dan sebelum bereaksi belum sama seperti :

N2 + H2 → NH3

Jumlah atom N sebelah kiri tanda panah sebanyak 1 buah, di sebelah kanan tanda panah 1 buah, sehingga yang di sebelah kanan tanda panah dikalikan 2. Akibat perkalian ini jumlah atom H di sebelah kan menjadi 6 buah, sedangkan di sebelah kiri terdapat 2 buah. Untuk menyetarakan jumlah atom H, maka atom H sebelah kiri dikalikan 3. Lihat bagan reaksi 2.17.

Bagan 2.17. Bagan reaksi yang menggambarkan tahap penyetaraan persamaan reaksi pembentukan NH3

bagan 2.17



Angka pengali yang dipergunakan untuk menyetarakanan reaksi, selanjutnya dimasukan ke dalam persamaan reaksi.

Pembentukan konsep asam dan basa

, 0 komentar

Pembentukan konsep asam dan basa

Kimia asam basa menjadi inti kimia sejak dari zaman kuno sampai zaman modern kini, dan memang sebagian besar kimia yang dilakukan di laboratorium di zaman dulu adalah kimia asam basa. Ketika kimia mulai menguat di bidang studi teoritisnya di akhir abad ke-19, topik pertama yang ditangani adalah kimia asam basa. Akibat dari serangan teoritis ini, kimia menjadi studi yang sangat kuantitatif. Jadi, bab ini sangat kuantitatif dibanding bab lain. Dalam bab, konsep penting seperti konsentrasi ion hidrogen, konstanta ionisasi, hidrolisis, kurva titrasi, larutan buffer, dan indikator akan didiskusikan. Konsep ini sangat mendasar dalam kimia, dan sukar bagi Anda mempelajari kimia kimia tanpa konsep ini.

Sebagian besar bahan kimia yang umum kita jumpai adalah asam dan basa. Namun, hanya belakangan ini saja kimiawan dapat menyimpan dan menggunakan dengan bebas berbagai asam basa dalam raknya di laboratorium.

Satu-satunya asam yang diketahui alkimia di zaman dulu adalah asam asetat yang tak murni, dan basa yang dapat mereka gunakan adalah kalium karbonat kasar yang didapatkan dari abu tanaman. Di abad pertengahan, kimiawan Arab mengembangkan metoda untuk menghasilkan asam mineral semacam asam hidrokhloratatau asam nitrat dan menggunakannya. Demikia juga basa-basa. Bahkan, kata “alkali”, nama umum untuk basa kuat, berasal dari bahasa Arab.

Di zaman modern, peningkatan populasi dan dengan perlahan naiknya standar mengakibatkan kebutuhan berbagai bahan juga meningkat. Misalnya, sabun, awalnya merupakan barang mewah dan mahal, kini menjadi tersedia luas. Akibatnya, kebutuhan natrium karbonat, bahan baku sapun, emingkat dengan tajam. Kebutuhan pakaian juga meningkat, yang menyebabkan peningkatan berbagai bahan kimia untuk pewarna dan sejenisnya. Untuk memenuhi kebutuhan ini, kini menghasilkan sejumlah cukup asam dan basa bukan masalah yang sederhana. Inilah awal munculnya industri kimia.

Di pertengahan abad ke-17, kimiawan Jerman Johann Rudolf Glauber (1604-1670), yang tinggal di Belanda, menghasilkan dan menjual tidak hanya berbagai asam dan basa, tetapi juga banyak alat kimia. Dalam hal ini ia dapat disebut insinyur kimia pertama. Ia juga menjual natrium sulfat sebagai obat mujarab dan mendapat keuntungan besar dari usaha ini.

Studi mendasar tentang asam basa dimulai di zaman yang sama. Boylem rekan sezaman dengan Glauber, menemukan metoda penggunaan pewarna yang didapatkan dari berbagai tumbuhan semacam Roccella sebagai indikator reaksi asam basa.13 Di saat-saat itu, telah diketahui bahwa asam dan basa mempunyai sifat berlawanan dan dapat meniadakan satu sama lain. Sebelum perkembangan kimia, asam didefinisikan sebagai sesuatu yang masam, dan alkali sebagai sesuatu yang akan menghilangkan, atau menetralkan efek asam.

Awalnya ada kebingungan tentang sifat dasar asam. Oksigen awalnya dianggap sebagai komponen penting asam. Bahkan nama “oksigen” berasal dari bahasa Yunani, yang berarti “membuat sesuatu masam”. Di pertengahan abad ke-19, Davy menemukan bahwa hidrogen khlorida (larutan dalam airnya adalah asam hidrokhlorida) tidak mengandung oksigen, dan dengan demikian membantah teori bahwa oksigen adalah komponen penting dalam asam. Ia, sebagai gantinya, mengusulkan bahwa hidrogen adalah komponen penting asam.

Sifat asam pertama diketahui dengan kuantitatof pada akhir abad ke-19. Di tahun 1884, kimiawan Swedia Svante August Arrhenius (1859-1927) mengusulkan teori disosiasi elektrolit yang menyatakan bahwa elektrolit semacam asam, basa dan garam terdisosiasi menjadi ion-ion komponennya dalam air. Ia lebih lanjut menyatakan bahwa beberapa elektrolit terdisosiasi sempurna (elektrolit kuat) tetapi beberapa hanya terdisosiasi sebagian (elektrolit lemah). Teori asam basa berkembang dengan cepat belandaskan teori ini.

ZAT ADITIF MAKANAN & FORMALIN

, 0 komentar

ZAT ADITIF MAKANAN & FORMALIN

Pernahkah anda membaca label isi kandungan makanan ringan yang anda beli? Jika diperhatikan betul-betul, anda pasti sadar selain komponen utama makanan atau obat-obatan yang anda beli sering mengandungi berbagai bahan campuran lain. Contohnya, bahan-bahan campuran yang diberi nama huruf awal "E", seperti E101 (Riboflavin), E123 (Amaranth), E211 (Natrium Benzoate), E249 (Kalium Nitrit), E322 (Lesitin) dan sebagainya. Bahan-bahan campuran ini diberi nama aditif. Jadi zat aditif makanan merupakan zat yang yang sengaja ditambahkan ke dalam makanan dengan maksud meningkatkan cita rasa, tampilan, daya simpan, dll.

Bahan aditif makanan dapat digolongkan menjadi beberapa kelompok tertentu tergantung kegunaanya, diantaranya:

* MSG sebagai penguat rasa makanan dan juga untuk melezatkan makanan. MSG merupakan zat aditif makanan buatan, sedangkan yang alami diantaranya adalah bunga cengkeh.

* Tartrazin adalah pewarna makanan buatan yang mempunyai banyak macam pilihan warna, diantaranya Tartrazin CI 19140. Bahan pewarna makanan alami diantaranya adalah daun pandan.

* Gom Arab adalah bahan aditif alami yang gunanya untuk mengemulsi minyak dan air agar dapat bersatu.

* Garam alginat dan gliserin marupakan bahan adtif buatan yang digunakan untuk menstabilkan dan memekatkan suatu makanan sehinggga dapat membuat makanan bertekstur lembut dan rata

Bahan aditif juga bisa membuat penyakit jika tidak digunakan sesuai dosis, apalagi bahan aditif buatan atau sintetis. Penyakit yang biasa timbul dalam jangka waktu lama setelah menggunakan suatu bahan aditif adalah kanker, kerusakan ginjal, dan lain-lain. Lebih parah lagi, apabila zat aditif yang digunakan sebenarnya bukan untuk dikonsumsi manusia (karena bersifat toxic) seperti pewarna merah Rhodamine-B (pewarna textile), Borax sebagai pengenyal dan pengawet (racun semut/kecoa serta bahan campuran barang industri termasuk pembuatan kaca anti peluru), Formalin sebagai pengawet makanan basah (biasa di gunakan mengawetkan mayat), Gula tetes serta pemanis buatan yang tidak disarankan antara lain Sakarin (daya manis hingga 500x gula tebu), dll.

TENTANG FORMALIN

Formalin : adalah larutan formaldehida dalam air, dengan kadar antara 10%-40%.Penggunaan Formalin yang salah adalah hal yang sangat disesalkan. Melalui sejumlah survey dan pemeriksaan laboratorium, ditemukan sejumlah produk pangan yang menggunakan formalin sebagai pengawet. Praktek yang salah seperti ini dilakukan oleh produsen atau pengelola pangan yang tidak bertanggung jawab. Beberapa contoh prduk yang sering diketahui mengandung formalin misalnya

1. Ikan segar : Ikan basah yang warnanya putih bersih, kenyal, insangnya berwarna merah tua (bukan merah segar), awet sampai beberapa hari dan tidak mudah busuk.
2. Ayam potong : Ayam yang sudah dipotong berwarna putih bersih, awet dan tidak mudah busuk.
3. Mie basah : Mie basah yang awet sampai beberapa hari dan tidak mudah basi dibandingkan dengan yang tidak mengandung formalin.
4. Tahu : Tahu yang bentuknya sangat bagus, kenyal, tidak mudah hancur, awet beberapa hari dan tidak mudah basi

Akibat bagi manusia : Karena resin formaldehida dipakai dalam bahan konstruksi seperti kayu lapis/tripleks, karpet, dan busa semprot dan isolasi, serta karena resin ini melepaskan formaldehida pelan-pelan, formaldehida merupakan salah satu polutan dalam ruangan yang sering ditemukan. Apabila kadar di udara lebih dari 0.1 mg/kg, formaldehida yang terhisap bisa menyebabkan iritasi kepala dan membran mukosa, yang menyebabkan keluar air mata, pusing, teggorokan serasa terbakar, serta kegerahan.

Kalau terpapar formaldehida dalam jumlah banyak, misalnya terminum, bisa menyebabkan kematian. Dalam tubuh manusia, formaldehida dikonversi jadi asam format yang meningkatkan keasaman darah, tarikan nafas menjadi pendek dan sering, hipotermia, juga koma, atau sampai kepada kematiannya.

Di dalam tubuh, formaldehida bisa menimbulkan terikatnya DNA oleh protein, sehingga mengganggu ekspresi genetik yang normal. Binatang percobaan yang menghisap formaldehida terus-terusan terserang kanker dalam hidung dan tenggorokannya, sama juga dengan yang dialami oleh para pegawai pemotongan papan artikel. Tapi, ada studi yang menunjukkan apabila formaldehida dalam kadar yang lebih sedikit, seperti yang digunakan dalam bangunan, tidak menimbulkan pengaruh karsinogenik terhadap makhluk hidup yang terpapar zat tersebut.

Pembuatan: Secara industri, formaldehida dibuat dari oksidasi katalitik metanol. Katalis yang paling sering dipakai adalah logam perak atau campuran oksida besi dan molibdenum serta vanadium. Dalam sistem oksida besi yang lebih sering dipakai (proses Formox), reaksi metanol dan oksigen terjadi pada 250 °C dan menghasilkan formaldehida, berdasarkan persamaan kimia

2 CH3OH + O2 → 2 H2CO + 2 H2O.

Katalis yang menggunakan perak biasanya dijalankan dalam hawa yang lebih panas, kira-kira 650 °C. dalam keadaan begini, akan ada dua reaksi kimia sekaligus yang menghasilkan formaldehida: satu seperti yang di atas, sedangkan satu lagi adalah reaksi dehidrogenasi

CH3OH → H2CO + H2.

Bila formaldehida ini dioksidasi kembali, akan menghasilkan asam format yang sering ada dalam larutan formaldehida dalam kadar ppm. Di dalam skala yang lebih kecil, formalin bisa juga dihasilkan dari konversi etanol, yang secara komersial tidak menguntungkan.

Kegunaan lain Formaldehide (bahan Formalin):

* Pengawet mayat
* Pembasmi lalat dan serangga pengganggu lainnya.
* Bahan pembuatan sutra sintetis, zat pewarna, cermin, kaca
* Pengeras lapisan gelatin dan kertas dalam dunia Fotografi.
* Bahan pembuatan pupuk dalam bentuk urea.
* Bahan untuk pembuatan produk parfum.
* Bahan pengawet produk kosmetika dan pengeras kuku.
* Pencegah korosi untuk sumur minyak
* Dalam konsentrat yang sangat kecil (kurang dari 1%), Formalin digunakan sebagai pengawet untuk berbagai barang konsumen seperti pembersih barang rumah tangga, cairan pencuci piring, pelembut kulit, perawatan sepatu, shampoo mobil, lilin, dan pembersih karpet.

(Pustaka: Wikipedia, Pusat Racun Negara Malaysia, plus olahan berbagai sumber)

Jika bisa yang alami & sehat, kenapa cari yang sintetis & merusak